
Modeling Discrete Count Data with Continuous
Probability Distributions: With An Application

In Music Generation

Bas Maat1[2749086]

Vrije Universtiteit, Amsterdam NH, NL, b.j.maat@student.vu.nl

Abstract. This paper explores the use of continuous probability dis-
tributions for modeling discrete count data, specifically in the context
of music generation. We propose a novel continuous distribution func-
tion called CONTIN, alongside established distributions like the Dis-
crete Weibull and Discretized Normal Distributions. They are compared
against the second proposed representation, Bitwise, an unsigned binary
bit-string. These are evaluated on two regression tasks (predicting bicy-
cle counts and social media upvotes) and a music generation task using
a transformer model. Results suggest that CONTIN is a viable option
for modeling data, particularly with larger datasets, while Bitwise con-
sistently outperforms other methods. Future research should include loss
balancing between different data tokens.

Keywords: Music Transformer · Distributing Count Data · MIDI Faith-
ful

1 Introduction

Modeling discrete count data present a unique challenge in data analysis and
machine learning, for instance modeling the number of bicycles in a parking
garage for bikes, or upvotes on a social media post. Traditionally, for model-
ing discrete count data tasks the Mean Squared Error (MSE) is used, but it is
not always suitable since count data is often skewed or over-dispersed. Several
approaches have been explored to address this challenge, such as the Poisson
Distribution that is often used in statistics for modeling count data [5] and the
Discrete Weibull Distribution [16] which performs better than the Poisson Dis-
tribution for count data in Machine Learning regression as proven by Kalktawi
et al. [14]. However, the Discrete Weibull Distribution still suffers from limita-
tions with modeling over-dispersed data [9]. To address the challenge of modeling
discrete count data and the shortcomings of the aforementioned distributions,
it is required to implement a distribution function that fulfills three essential
criteria: (1) the distribution must produce ordinal outputs, reflecting the inher-
ent ordinal nature of count data; (2) the use of continuous parameters ensures a
smooth loss surface, which is crucial for effective modeling and optimization; and
(3) differentiable distributions are fundamental for gradient-based optimization
algorithms commonly used in modeling tasks.

2 B. Maat

Considering these requirements, two innovative approaches are introduced:
CONTIN and Bitwise. CONTIN is a novel distribution function specifically de-
signed for discrete count data with continuous parameters. It draws inspiration
from the Discrete Weibull (Dweib) [16] and Discrete Normal (Dnormal) [22]
distributions, improving upon both by establishing a fair mapping between con-
tinuous parameters and discrete values, while maintaining sufficient stability to
model over-dispersed data. On the other hand, Bitwise relies on the Bernoulli
Distribution, using a binary bit-string to represent count data, where each indi-
vidual bit relies on the Bernoulli Distribution. Bitwise has continuous probabil-
ities as the input and converts the bit-string to an integer value as the output.
CONTIN and Bitwise offer the flexibility to combine Categorical Cross Entropy
loss with the loss specific to each distribution, a feature not readily achievable
when using MSE loss. In this paper, a practical application of CONTIN and
Bitwise is explored in the context of music modeling, where this combined loss
can improve modeling time.

In essence, music can be distilled into two fundamental elements: pitch and
time. Pitch is commonly represented in discrete frequency bins (categorical),
while time in ticks is intrinsically continuous (regressive) and can not be properly
modeled by current day models. Music Instrument Digital Interface (MIDI) [3] is
used as a simplified representation of these musical elements in the digital realm,
which has become the standard for modeling music. However, current MIDI-
based models typically simplify the time domain by discretizing it into multiple
bins and often quantizing it, transforming time from a continuous into a discrete
representation. This simplification necessitates the use of multiple consecutive
tokens to advance time, leading to an overrepresentation of time tokens compared
to other musical elements. Consequently, the expressiveness of these models is
limited, particularly when generating non-Western music, which often features
complex rhythms and microtiming variations. Moreover, these models often rely
exclusively on twelve-tone equal temperament to represent pitch, introducing a
Western-music bias.

To address these biases in rhythm and pitch representation, a more faithful
adherence to the MIDI standard is required, leveraging its full capabilities to
represent diverse musical styles. This entails developing tokenization methods
that enable models to fully comprehend the nuances of MIDI data, capturing
both continuous time variations and a wider range of pitch possibilities. Models
that can comprehend these nuances of MIDI data are referred in this paper as
MIDI Faithful models. MIDI Faithful models not only fully use elements of MIDI
as pitch and control messages, but it also represents time in a single event. This
is possible by modeling the tick token as discrete count data. For this purpose,
we will use the aforementioned distribution functions since they can easily be
combined with the other elements of MIDI, which are categorical features.

In short, this paper investigates whether: (1) a distribution for discrete num-
bers using continuous parameters can be made; (2) whether this distribution
works for modeling purposes; and (3) whether it works within a musical context.

Modeling Discrete Count Data 3

2 Related work

2.1 Discrete Integer Modeling

One prominent example of distributions with continuous parameters is the Dis-
crete Weibull distribution [16]. Collins et al. [6] models over-dispersed count data
using this discrete distribution. The research shows the great potential of the
Discrete Weibull distribution for regression tasks, especially in comparison with
the Poisson distribution for regression [5]. Kalktawi et al. [14] stands out as a
significant contribution, bridging a gap in the existing methodology of the Dis-
crete Weibull Distribution. Kalktawi introduces a versatile and computationally
efficient approach to address the common challenges in count data modeling, par-
ticularly dispersion and the presence of excessive zeros. The application of their
model to diverse real-world datasets underscores its practical relevance and po-
tential to significantly improve the analysis of count data in various fields, setting
a new precedent for future research and application in discrete data analysis.

Similar to CONTIN, Tovissodé et al. [24] covers balanced discretization for
modeling count data, specifically addressing the challenges encountered in re-
gression analysis due to various levels of data dispersion equi-, under-, and over-
dispersion. Balanced discretization offers a solution by discretizing continuous
probability distributions in a way that expectations are preserved, enabling the
exact inference for count data across all dispersion levels. The core contribution
of this work is the introduction of the balanced discrete gamma distribution, a
family of distributions that can accurately model count data with different dis-
persion levels. This method simplifies the generation of pseudo-random variate
through a probabilistic rounding mechanism, making it especially suitable for
count regression models where data do not adhere to the strict equi-dispersion
assumption of the Poisson model.

2.2 MIDI Representation

Music Transformer [12] marked a significant advancement in music modeling,
demonstrating the power of the Transformer architecture for generating mu-
sic with improved long-term structure and coherence. This model was the first
attempt at using a transformer model to model MIDI data. As a music repre-
sentation, the researchers used the encoding proposed in Oore et al. [18]. This
encoding represents MIDI in individual blocks as a sequence of: note on, velocity,
time shift and note off. In between these blocks, various time shifts can be given
with a maximum of 10 milliseconds per token. The velocity value is binned to 32
different dynamics. Transformers are very effective at modelling MIDI using this
encoder, in comparison to an LSTM. Another interesting introduction is the use
of relative position encoding for the transformer model, which hugely improves
the capabilities of modeling time.

Newer models, such as REMI [13] and REMI+ [23] represent MIDI as a
sequence of note and time tokens. The note tokens consist of pitch, velocity and
duration tokens, while the time is represented with bar and position tokens. The

4 B. Maat

music is split up into separate bars where each bar is further divided into sub
steps. The position token defines in which sub-step of the bar following note
should be placed. In addition to REMI, REMI+ was introduced to add program
tokens to handle multiple instruments.

Finally, the Octuple tokenizer was first introduced in Music Bert [26]. This
representation uses a matrix to represent the MIDI events, so multiple tokens
at once over time. At each token there is a pitch, velocity, duration, program,
position (relative to bar), bar number, tempo and time signature.

Each of the aforementioned implementation are MIDI unfaithful since they
still discretize and quantize the time domain across multiple tokens. However,
Octuple’s representation is the most similar to the tokenizer introduced in the
current paper, as it uses multiple tokens over time.

3 Distribution Modeling

3.1 CONTIN

CONTIN exists in three main forms, unbounded, two-way bounded and one-way
bounded. For the purposes of this research, only the one-way bounded form is
explored, since ticks are only lower bounded by zero. Furthermore, CONTIN
is characterized by two continuous parameters: µ (mean) and γ ∈ R|0 < γ <
1 (dispersion). The distribution assigns probabilities to discrete integer values
centered around µ.

The probability mass of µ is balanced between the two nearest integers, ⌊µ⌋
and ⌈µ⌉. If the µ value is set to exactly a discrete integer value the ⌊µ⌋ would
be equal to ⌈µ⌉, this would cause instability in the equation. To circumvent
this issue, we define ⌈µ⌉ as ⌊µ⌋+1. This is achieved using a convex combination,
where the weights are determined by the distance (d) of µ to its floor and ceiling,
as shown in Equation 1. For instance, if µ lies exactly halfway between ⌊µ⌋ and
⌈µ⌉ and γ is 0, then both would have a probability of 0.5.

⌈µ⌉ = ⌊µ⌋+ 1

df = µ− ⌊µ⌋
dc = ⌈µ⌉ − µ

bf = dc + γ ∗ (1− dc)

bc = df + γ ∗ (1− df)

(1)

When the dispersion parameter γ is 0 all the probability is concentrated
on ⌊µ⌋ and ⌈µ⌉. As γ increases, the probability mass of these values decreases
and the distribution spreads more across the surrounding integers. To calculate
the probabilities for the remaining discrete values in the distribution, separate
geometric series are employed for the left and right tails. The left tail begins with
the probability assigned to ⌊µ⌋, while the right tail starts with the probability
assigned to ⌈µ⌉.

Equation 2 provides the log probability mass function (PMF) for the one-way
CONTIN distribution, calculating the logarithmic probability of observing the

Modeling Discrete Count Data 5

value x, given parameters µ and γ. To further illustrate CONTIN Fig. 1 provides
a clear illustration of the discretization of the µ value.

x = target value

bp =

{
bf if x ≤ µ

bc else x > µ

d =

{
⌊µ⌋ − x if x ≤ µ

x− ⌈µ⌉ else x > µ

logP (X = x|µ, γ) = log (bp) + d · log(γ)
logP (X = x|µ, γ) = log (1− γ)− log(bf · (1− γ⌊µ⌋+1) + bc) + logP (X = x|µ, γ)

(2)

Fig. 1. Visual example of the convex combination of µ.

3.2 Modeling with CONTIN

For modeling purposes, CONTIN is employed to predict discrete integer values.
To accomplish this, the model outputs values for µ and γ. The loss is then
calculated by determining the negative logarithmic probability of the observed
value x under the CONTIN distribution, given the µ and γ values predicted
by the model. However, the raw output of a model cannot be directly used as
input to the distribution function. Negative µ values would lead to an invalid
distribution with a total area not equal to 1. Furthermore, γ must be strictly
bounded between 1e-5 and 1 - (1e-5) to ensure stability and proper behavior of
the distribution.

To address these issues, we introduce three activation functions to scale the
raw model outputs into the correct representation for µ and γ, ensuring they
meet the required constraints of the CONTIN distribution.

6 B. Maat

3.3 Activation functions

For each of the different distribution functions, it is important to represent the
outputs of the model adequately. We propose three different activation func-
tions for the one-way bounded approach for the µ parameter and one for the γ
parameter.

First, the absolute activation function (ABS). It behaves similarly to ReLU
[15], but it has an expanded search space in the direction where ReLU becomes
negative. ABS is calculated with the parameters α, which determines the slope,
and β, which determines the distance from zero. The final parameter l is the
lower bound value of the function found in equation 3.

µ = |µ · α+ β|+ l (3)

Secondly, the parabola activation function (PARA). It provides an improve-
ment over ABS due to its softened lower bound at the bottom. PARA also uses
the parameters α and β similarly to ABS. On the contrary, PARA’s α value is
more sensitive than in ABS and better kept below 2. l is the parameter that
controls the lower bound, equation 4.

µ = α · (µ+ β)2 + l (4)

Finally, the Sigmoid linear function (SIGLIN). The SIGLIN function is a hy-
brid between a sigmoid function and a linear activation function, inspired by SiL
[8] and Swish [21]. Both of these activation functions improve upon the perfor-
mance of ReLU [2] in deep learning tasks, However, neither fits the requirements
of holding to a strict lower bound. SIGLIN incorporates two parameters, namely
α and β, where α determines the slope of the linear part and the sharpness of the
Sigmoid curve, and β determines the crossover point from the Sigmoid function
to linear. l is the parameter that controls the lower bound. The SIGLIN function
should give the model more fine-grained control over values closer to the lower
bound in contrast to the values further from the lower bound, equation 5

z =
µα− l − β

0.5β

µ = min(
1

1 + e−z
· 2β, β) + max(µα, β + l)− β

(5)

Each of these activation functions are used with Dweib, Dnormal and CON-
TIN.

3.4 Bitwise

Bitwise presents a novel approach to integer regression by decomposing it into
a series of binary classification tasks. With Bitwise, integer numbers are trans-
formed into unsigned binary bit-strings, where the numbers of bits (up to n)
determine the maximum representable integer. While this imposes a two-way

Modeling Discrete Count Data 7

boundary, increasing the bit count significantly raises the upper limit. The repre-
sentation is also flexible enough to accommodate different encodings to allow for
different boundary limitations, for example encoding negative numbers through
two’s complement encoding.

For this study, we focus on a 32-bit unsigned binary encoding. This choice
is motivated by the absence of negative values in our dataset and the sufficient
range of 32 bits to encompass all data points.

To assess model performance, we employ Bitwise Binary Cross Entropy (BBCE).
This loss function compares the model’s output bit-string to the target integer
value (which is also encoded in bit-string form). Before the model’s output bit-
string is computed in BBCE it is first activated using Log Sigmoid, similarly to
regular activation for Binary Cross Entropy with Logits. BBCE is computed for
each individual bit and then averaged across all bits.

3.5 Model

To implement these regression tasks, we employ a multi-layer perceptron (MLP)
architecture with intermediate ReLU activation layers. The model consists of
three layers: an input layer with n nodes, a hidden layer with 128 nodes, and
an output layer with either 2 nodes (for CONTIN, Dweib and Dnormal distri-
butions) or 32 nodes (for the Bitwise method). The 2-node output represents
the input parameters for the respective distributions, while the 32-node output
corresponds to the probabilities of each bit in a 32-bit string.

Loss calculation is performed using the negative log-likelihood for CONTIN,
Dweib, and Dnormal, and the BBCE method for Bitwise. This is reported as
the average compression loss in bits for each method.

These approaches are benchmarked against the root mean squared error
(RMSE) between the model’s output (single output node) and the target in-
teger value. For comparison, the RMSE of each distribution is computed using
its mean as a proxy for the predicted integer. For Bitwise, the RMSE is calcu-
lated directly by decoding the output bit-string and comparing it to the target
integer.

3.6 Hyper Parameter Tuning

For each task a good α, β and learning rate has to be found. Hence, hyperpa-
rameter tuning is applied to select the best performing model, as shown in Table
1. The best performing hyper parameters are then used for the test set. Each
of the models iterated over six different learning rates: 3.4e-3, 1e-3, 3.4e-4, 1e-4,
3.4e-5 and 1e-5.

3.7 Datasets

The Bicycles dataset [10] focuses on predicting the hourly number of bicycles
parked in a designated space within the Capital Bike Sharing System of Wash-
ington D.C. nitially comprising 12 features, one-hot encoding of nominal features

8 B. Maat

Table 1. Tuned hyperparameter ranges

Loss function A B
ABS 2, 4, 10, 16 25, 50, 100, 200
SIGLIN 2, 4, 8, 16 25, 50, 100, 200
PARA 0.1, 0.25, 0.5, 1.0, 2.0 -25, 0, 25

expands the dataset to 58 features. The dataset is divided into a training set
(10,948 samples, 63%), a test set (5,214 samples, 30%), and a validation set
(1,217 samples, 7%).

The Upvotes dataset [17] aims to predict the number of upvotes a social
media post will receive. It employs a similar train/test/validation split as the
Bicycles dataset, with 207,927 training samples, 99,014 test samples, and 23,104
validation samples. The primary goal is to predict upvotes based on the post’s
tag, number of answers, and the poster’s reputation. One-hot encoding of the tag
type (the only nominal feature) and standard scaling of other features results in a
total of 12 features. As shown in Figure 2, the Upvotes dataset presents a greater
challenge for modeling due to the higher variance in target values compared to
the Bicycles dataset.

Fig. 2. Target variance

Modeling Discrete Count Data 9

4 Distributed Modeling Results

Hyperparameter tuning for both the Bicycles and Upvotes datasets reveals that
the optimal α value is 4, the optimal β value is 50. However, these values vary
slightly depending on the chosen activation function. Especially, PARA stands
out with an optimal α of 0.1 and a β value of 0. A comprehensive overview of the
best hyperparameter values for each dataset and activation function combination
can be found in Table 2.

Table 2. Best Hyperparameters Bicycles

Bicycles Upvotes
Loss Function Activation Learning

Rate
α β Learning

Rate
α β

CONTIN
ABS 3.4e-3 4 25 1e-4 2 25
PARA 3.4e-3 0.1 0 3.4e-4 2.0 0
SIGLIN 1e-3 4 50 1e-3 2 25

Dnormal
ABS 3.4e-4 2 25 3.4e-3 2 50
PARA 3.4e-4 0.1 0 3.4e-3 0.1 0
SIGLIN 3.4e-3 10 25 1e-3 16 25

Dweib
ABS 3.4e-4 2 25 1e-5 2 200
PARA 3.4e-4 0.1 0 3.4e-3 2.0 25
SIGLIN 1e-4 4 200 1e-5 16 100

Bitwise Log Sigmoid 1e-5 na na 3.4e-3 na na
SQE na 3.4e-3 na na 3.4e-3 na na

4.1 Results

Across both the Bicycles and Upvotes datasets, Bitwise consistently outperforms
other methods, achieving both the lowest compression in bits and the lowest
RMSE loss. An overview of the results can be found in Table 3.

The Dweib distribution function, when paired with the ABS activation func-
tion, demonstrates the strongest performance on the Bicycles dataset. Inter-
estingly, CONTIN and Dnormal exhibit similar results when combined with
SIGLIN.

Dnormal emerges as the most effective distribution function on the Upvotes
dataset, especially when paired with the PARA activation function. While Dnor-
mal with ABS shows comparable RMSE. CONTIN also performs reasonable well,
but slightly underperforms compared to Dnormal. In contrast, Dweib proves un-
stable and yields high and NaN loss on this dataset.

4.2 Results Analysis

Bitwise consistently outperforms all other combinations in terms of both bits
and RMSE on both the Bicycles and Upvotes datasets. This suggests that trans-

10 B. Maat

Table 3. Test set results bicycles and upvotes, best in bold

Bicycles Upvotes
Loss Type Activation Bits RMSE Bits RMSE

CONTIN
ABS 15.787 206.861 9.197 2194.675
PARA 14.316 226.400 8.685 2182.036
SIGLIN 10.334 229.121 9.889 2699.537

Dnormal
ABS 10.274 168.463 9.347 1642.377
PARA 12.425 228.179 8.465 2128.102
SIGLIN 10.774 189.500 23.232 69414.511

Dweib
ABS 7.64 148.741 nan nan
PARA 96.982 268.212 143.434 2170.820
SIGLIN 9.592 259.153 138.297 2360.165

Bitwise Log Sigmoid 0.300 4.728 0.214 9.14
Sqe na na 44.620 na 654.100

forming integer regression into a multi-target binary classification task is highly
effective.

While CONTIN and Dnormal distribution functions show good performance,
particularly with high-dimensional data, Dweib exhibits instability in those sce-
narios. Although distribution functions like CONTIN and Dnormal offer the
advantage of calculating the explainable variance, in these experiments they did
not outperform the simpler bitwise or RMSE methods in terms of predictive
accuracy.

This research demonstrates the potential of Bitwise as a powerful tool for
integer regression tasks, while also highlighting the importance of careful con-
sideration when selecting distribution functions for specific datasets and problem
contexts.

5 MIDI Faithful

Building upon our previous findings, where Bitwise demonstrated superior per-
formance in integer regression tasks, the focus shifts to investigate how Bitwise,
along with CONTIN and Dnormal, fare in the context of music modeling. As
discussed in the introduction, these distributions are chosen for their compatibil-
ity with categorical features in music, allowing for seamless integration of their
loss with Categorical Cross Entropy. This integration is not as straightforward
when employing continuous distributions or MSE loss.

5.1 MIDI Faithful Representation

MIDI Faithful is a way of tokenizing MIDI that closely follows general MIDI [3].
The tokenizer represents the data across six different events: event, data1, data2,
channel, instrument and tick, as described in 4. In contrast to other tokenizers,
MIDI Faithful is able to capture each MIDI event without requiring multiple

Modeling Discrete Count Data 11

timeshift events. The tokens per event are represented in a similar stacked form
as Octuple [26].

Table 4. MIDI representation

Event Data 1 Data 2 Channel Instrument MIDI Tick
Note on 0-127 0-127 0-15 0-127 0-∞
Note off 0-127 0-127 0-15 0-127 0-∞

Polytouch 0-127 0-127 0-15 0-127 0-∞
Pitch Bend 0-127 0-127 0-15 0-127 0-∞

Channel Pressure 0-127 0-127 0-15 0-127 0-∞

There are five different event tokens: note on, note off, channel pressure,
aftertouch, and pitch. There are 128 data1, data2 and instrument tokens and 16
channel tokens. This research only uses note on and note off events, which means
that data1 is only representing pitch and data2 only representing velocity.

Ticks are smaller subdivisions of time of a single beat, which is normally
set to 120 Beats Per Minute (BPM) at 96 Pulses Per Quarter (PPQ). This
results in a discretization of the time domain into bins of 5.2ms, the amount
of milliseconds in a minute divided by the product of BPM and PPQ. In this
research a resolution of 220 PPQ is used resulting in a bin size of 2.27ms. Multiple
smaller bins are advantageous as it offers more information about time to models.
Nonetheless, both the standard and the adjusted bin sizes are well below the Just
Noticeable Difference threshold of 24 ms that humans can perceive [1]. Any note
with a lower duration than this threshold cannot be easily distinguished as an
individual beat in a rhythmic pattern. However, it is still possible that these
shorter notes can portray additional context in music. Thus, it is desirable to
keep the bin size considerable small. The ticks have an infinite number of tokens
represented as integers.

Similarly to general MIDI, MIDI events are rolled out over time with the tick
token relatively in length to the previous event, when an event has to start at
the same time as the previous event it will be set at 0 ticks. This is illustrated
in Fig 3.

5.2 Dataset

To primarily evaluate the performance of tick prediction, various synthetic datasets
with increasing levels of difficulty are used, culminating in the MAESTRO V3
dataset [11] as the gold standard. MAESTRO V3 presents the most challenging
scenario out of the selected dataset due to its large collection of classical piano
music featuring diverse levels of virtuosity.

The synthetic datasets are randomly sampled during training, while MAE-
STRO is randomly sliced since it is a fixed dataset. The synthetic dataset contain
44 different tonal scales (see Appendix C Table 8) and 31 distinct rhythms (see
Appendix C Table 9). The order of the scales, rhythms, and tonics are randomly

12 B. Maat

Fig. 3. Example of midi tokens over time.

shuffled after each epoch. Each of these synthetic datasets have a resolution fo
220 ticks at 120 BPM. For MAESTRO the files are loaded in a random order
and the sliced subsequences are randomly shuffled.

Random Scales : The random scales dataset is a dataset with a fixed rhythm
and only varying the pitch (data1). The tick for a note on event relative to the
previous note is 80 MIDI ticks, and the note off event is 140 MIDI ticks. Making
a single note a bit longer than half the tick resolution of 220 MIDI ticks, and
giving the note a brief pause before the next note starts.

Scales : The second pitch based dataset is the scales dataset. This dataset uses
the same rhythmic vocabulary as the random scales dataset. The only difference
is that the scales follows one direction from tonic to tonic (the starting tone of
a scale). It does a pattern up and then down in the range of the scale, when it
is at its lowest point it has a 50/50 chance of either walking up an octave extra
or down an extra octave.

Scales Extending : The scales extending dataset uses the same note choice
rules as the scales dataset, it has an addition in the rhythmic section. Every time
the scales does an octave walk in the same direction twice the note and pause
length will double. Effectively slowing the song every time the generator goes up
a couple of times. This is to test the effects of applying rhythmic changes at the
same time as note changes.

Rhythm Only : This dataset keeps the pitches consistent, but applies different
rhythms over time, similarly as changing the scales per "song". The consistent
note is set at 60 (central c). This dataset is chosen to see the effectiveness of the
modelling of just the rhythm.

Modeling Discrete Count Data 13

Rhythmic Random Scales : Rhythmic random scales is a combination of
random scales and rhythm only. This is to test the full capabilities of the model
to create a rhythm while playing a pattern of notes.

MAESTRO : Finally, MAESTRO contains 13,424,811 training samples, 4,274,905
test samples and 1,437,884 validation samples. MAESTRO is a curated set of
classical piano music with various levels of expressively. This dataset is consid-
ered the golden standard for testing any generative music models.

During training, model validation occurs every 20,000 steps. For each synthetic
dataset, 30% of the data is reserved for testing. Specifically, if only scales are used
in a dataset, 30% of the scales are held back for testing. In the case where both
scales and rhythms are incorporated, approximately 15% of each are reserved
for testing.

Given the random sampling of the synthetic datasets during training, vali-
dation can be performed on the same scales and rhythms as the training set, as
the random sampling ensures sufficient diversity in both sets. Each of the tests
use a random seed of 42 to ensure reproducibility.

5.3 Transformer model

Similarly to Music Transformer [12] a Transformer model [25] is employed for
its scalability and aptitude in processing sequential data. The architecture of
Generative Pre-Training (GPT) is adopted, using the same hyperparameters
outlined in Radford et al. [19]:

– 12 heads
– 12 layers
– 512 sequence length
– 768 embedding dimension
– 0.1 dropout

In line with Music Transformer, we implement relative positional encoding
to enhance the model’s ability to capturing temporal information. The latest
implementation of relative positional encoding by Zihang Dai et al. [7]is used,
which offers improvements over earlier versions. The transformer model has two
output variations, similar to the preliminary research. One variant has two out-
put nodes for predicting the µ and σ or γ for CONTIN and Dnormal. The other
has 32 output nodes with 32 bits for the Bitwise representation. The former
having 93.6 M parameters and the latter 112 M parameters.

5.4 Embedding and Encoding

Each event type is processed through its own dedicated embedding layer, except
tick values. As ticks are not categorical, they are not suitable for direct embed-
ding. To achieve a similar representational effect, the ticks are encoded as a 32

14 B. Maat

bit bit-string. Furthermore, to capture the magnitude of tick values, the natural
log of the tick value is added as an additional feature. This encoding is applied
for Bitwise as well as CONTIN and Dnormal.

6 MIDI Faithful Results

As described in Table 5 Bitwise outperforms other methods across all datasets.
Notably, CONTIN generally surpasses Dnormal, with ABS proving most effective
for CONTIN, except on the MAESTRO dataset, where SIGLIN excels. This
suggests that SIGLIN may be better suited for capturing complex data patterns,
while underperforming on simpler datasets. In contrast, Dnormal remains largely
unaffected by different activation functions, except for the Rhythmic Scales and
MAESTRO datasets. This implies that datasets with rhythmic variation may
necessitate careful selection of the activation function for Dnormal.

Table 5. MIDI Faithful validation results in bits, best in bold.

Loss Type Activation Random
Scales

Scales Scales
Extending

Rhythm Only Rhythmic
Random
Scales

MAESTRO

CONTIN
ABS 4.593 8.521 16.302 2.951 3.950 33.238
PARA 3.070 9.874 16.184 5.503 5.559 54.728
SIGLIN 11.238 14.365 18.471 5.801 11.735 14.200

Dnormal
ABS 16.810 21.990 21.843 16.382 14.509 24.489
PARA 16.810 21.990 21.843 16.326 17.329 25.398
SIGLIN 16.810 21.990 21.843 16.327 18.818 24.558

Bitwise Log Sigmoid 0.592 6.128 5.770 0.096 0.972 8.951

The total loss comprises a combination of Cross Entropy for embedded events
and the specific loss function employed for tick prediction. Among the datasets,
Scales and Scales Extending exhibit weaker performance, likely attributable to
their distinct note generation algorithm. To further investigate this, Table 6
compares the Random Scales dataset against the Scales and Scales Extending
datasets.

Dnormal consistently demonstrates inferior performance when modeling ticks
compared to learning the notes, indicating its unsuitability for tick modeling
in this context. Conversely, CONTIN varies: it balances both components in
the Random Scales dataset, excels at tick modeling in the Scales dataset, but
underperforms in the more complex Scales Extending dataset. Bitwise proves
consistently effective at tick modeling across all datasets. However, its data1
loss remains relatively high for most datasets.

As Bitwise outperforms the other distributions, we only report the results of
the test set on Bitwise. Table 7 shows a consistent pattern where the test loss
mirrors the validation loss across all datasets, indicating that the model is not
overfitting.

Modeling Discrete Count Data 15

Table 6. MIDI Faithful validation results in bits of Ticks against Data1 in Random
Scales, Scales and Scales Extending. best in bold.

Random Scales Scales Scales Extending
Loss Type Activation Tick Data1 Tick Data1 Tick Data1

CONTIN
ABS 2.563 2.023 2.421 6.097 10.474 5.819
PARA 1.755 1.311 3.784 6.086 10.389 5.788
SIGLIN 5.784 5.257 5.784 8.389 10.245 8.179

Dnormal
ABS 16.325 0.479 16.325 5.663 16.325 5.517
PARA 16.325 0.479 16.325 5.663 16.325 5.517
SIGLIN 16.325 0.479 16.325 5.663 16.325 5.517

Bitwise Log Sigmoid 0.002 0.587 0.001 6.127 0.030 5.738

Table 7. MIDI Faithful test results in bits.

Random
Scales

Scales Scales
Extending

Rhythm
Only

Rhythmic
Random
Scales

MAESTRO

Bitwise Validation 0.592 6.128 5.770 0.096 0.972 8.951
Bitwise Test 0.868 5.121 4.932 0.093 1.242 7.110

7 Conclusion

In this research, we demonstrated the challenges of modeling discrete count
data. While both CONTIN and Dnormal outperformed Dweib when it comes to
distributed modeling, they underperform in comparison to the standard RMSE
loss. This demonstrates that while it is possible to create a distribution function
for discrete numbers using continuous parameters, it does not work well for
modeling purposes over existing methods.

Conversely, Bitwise not only demonstrates efficacy in modeling, but also
has continuous parameters for each of its output bits, which use an under-
lying Bernoulli distribution. Furthermore, it outperforms the commonly used
RMSE loss. A potential limitation of Bitwise lies in its two-way bounded nature.
However, this constraint might be mitigated by exploring alternative decoding
methods like Two’s Complement, which would enable Bitwise to predict negative
numbers. Additionally, investigating other decoders could potentially extend its
capabilities to for instance decimal numbers.

Our findings further reveal that Bitwise is most suitable among the tested
distribution functions for modeling MIDI data, bringing MIDI Faithful model-
ing a step closer to reality. While CONTIN exhibits performance improvements
over Dnormal, suggesting greater stability for combined learning tasks like MIDI
faithful modeling, it still falls short of Bitwise’s performance gains.

A notable trade-off exists between modeling ticks and other events, with Bit-
wise consistently excelling at tick modeling. One potential improvement to the
loss of other events could be to use Bitwise for modeling these events. Since these
events typically require fewer bits for representation (e.g., 7 bits for Data1 and

16 B. Maat

Data2), this approach could be feasible. Alternatively, employing larger Trans-
former models like GPT-2 variations [20] might also enhance Data1 modeling.

In conclusion, MIDI Faithful modeling appears to be within reach, particu-
larly with the use of Bitwise and the proposed tokenizer. However, this tokenizer
could benefit from improvements, such as incorporating pitch bends and other
control events that are used in general MIDI. Pitch bending is a possible event
token, which is not fully implemented in the current tokenizer, this would require
the Data1 and Data2 tokens to be converted into a bit-string and converted back
into a pitch bend integer.

Finally, it is important to acknowledge that this study did not directly com-
pare the proposed MIDI Faithful tokenizer against other existing tokenizers like
REMI+, Octuple, or Music Transformer due to the complexities involved. How-
ever, it is worth noting that current MIDI tokenizers often suffer from informa-
tion loss during tokenization. To facilitate a comprehensive comparison, future
research could incorporate this information loss into the total compression loss
(in bits) for a more accurate evaluation.

Acknowledgments. This study would not have been possible without the support
of DAS6 [4] and Snellius. Both supercomputer clusters were of great help running the
experiments.

References

1. Adelstein, B., Begault, D., Anderson, M., Wenzel, E.: Sensitivity to haptic-audio
asynchrony. pp. 73–76 (11 2003). https://doi.org/10.1145/958432.958448

2. Agarap, A.F.: Deep learning using rectified linear units (relu) (2019)
3. Association, M.M.: MIDI 1.0 Detailed Specification (1996), https://midi.org/

midi-1-0-detailed-specification, 1996 Revision
4. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,

Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science
research: Infrastructure for the long term. Computer 49(05), 54–63 (may 2016).
https://doi.org/10.1109/MC.2016.127

5. Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data, vol. 53. Cam-
bridge University Press (2013)

6. Collins, K., Waititu, A., Wanjoya, A.: Discrete weibull and artificial neural network
models in modelling over-dispersed count data. Int J Data Sci Anal 6(5), 153–62
(2020)

7. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.:
Transformer-xl: Attentive language models beyond a fixed-length context (2019),
https://arxiv.org/abs/1901.02860

8. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning (2017)

9. Englehardt, J., Li, R.: The discrete weibull distribution: An alternative for cor-
related counts with confirmation for microbial counts in water. Risk analysis :
an official publication of the Society for Risk Analysis 31, 370–81 (11 2010).
https://doi.org/10.1111/j.1539-6924.2010.01520.x

10. Fanaee-T, H.: Bike Sharing. UCI Machine Learning Repository (2013), DOI:
https://doi.org/10.24432/C5W894

https://doi.org/10.1145/958432.958448
https://doi.org/10.1145/958432.958448
https://midi.org/midi-1-0-detailed-specification
https://midi.org/midi-1-0-detailed-specification
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1109/MC.2016.127
https://arxiv.org/abs/1901.02860
https://doi.org/10.1111/j.1539-6924.2010.01520.x
https://doi.org/10.1111/j.1539-6924.2010.01520.x

Modeling Discrete Count Data 17

11. Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.Z.A., Dieleman,
S., Elsen, E., Engel, J., Eck, D.: Enabling factorized piano music modeling and
generation with the MAESTRO dataset. In: International Conference on Learning
Representations (2019), https://openreview.net/forum?id=r1lYRjC9F7

12. Huang, C.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Hawthorne, C., Dai, A.M.,
Hoffman, M.D., Eck, D.: An improved relative self-attention mechanism for trans-
former with application to music generation. CoRR abs/1809.04281 (2018),
http://arxiv.org/abs/1809.04281

13. Huang, Y.S., Yang, Y.H.: Pop music transformer: Beat-based modeling and gener-
ation of expressive pop piano compositions. In: Proceedings of the 28th ACM Inter-
national Conference on Multimedia. p. 1180–1188. MM ’20, Association for Com-
puting Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3394171.
3413671, https://doi.org/10.1145/3394171.3413671

14. Kalktawi, H., Vinciotti, V., Yu, K.: A simple and adaptive dispersion regression
model for count data. Entropy 20 (11 2015). https://doi.org/10.3390/e20020142

15. Maas, A.L.: Rectifier nonlinearities improve neural network acoustic models (2013),
https://api.semanticscholar.org/CorpusID:16489696

16. Nakagawa, T., Osaki, S.: The discrete weibull distribution. IEEE Transactions on
Reliability R-24(5), 300–301 (1975). https://doi.org/10.1109/TR.1975.5214915

17. Naseer, U.: Predict the number of upvotes a post will get. https://www.kaggle.
com/datasets/umairnsr87/predict-the-number-of-upvotes-a-post-will-get (2020),
accessed: March 20, 2024

18. Oore, S., Simon, I., Dieleman, S., Eck, D., Simonyan, K.: This time with feeling:
Learning expressive musical performance (2018)

19. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding by generative pre-training (2018)

20. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

21. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions (2017)
22. Roy, D.: The discrete normal distribution. Communications in Statistics-theory

and Methods - COMMUN STATIST-THEOR METHOD 32, 1871–1883 (01 2003).
https://doi.org/10.1081/STA-120023256

23. von Rütte, D., Biggio, L., Kilcher, Y., Hofmann, T.: Figaro: Generating symbolic
music with fine-grained artistic control (2024)

24. Tovissodé, C.F., Honfo, S.H., Doumatè, J.T., Glèlè Kakaï, R.: On the discretiza-
tion of continuous probability distributions using a probabilistic rounding mech-
anism. Mathematics 9(5) (2021). https://doi.org/10.3390/math9050555, https:
//www.mdpi.com/2227-7390/9/5/555

25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need (2023)

26. Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T., Liu, T.Y.: Musicbert: Symbolic music
understanding with large-scale pre-training (2021)

https://openreview.net/forum?id=r1lYRjC9F7
http://arxiv.org/abs/1809.04281
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.3390/e20020142
https://doi.org/10.3390/e20020142
https://api.semanticscholar.org/CorpusID:16489696
https://doi.org/10.1109/TR.1975.5214915
https://doi.org/10.1109/TR.1975.5214915
https://www.kaggle.com/datasets/umairnsr87/predict-the-number-of-upvotes-a-post-will-get
https://www.kaggle.com/datasets/umairnsr87/predict-the-number-of-upvotes-a-post-will-get
https://doi.org/10.1081/STA-120023256
https://doi.org/10.1081/STA-120023256
https://doi.org/10.3390/math9050555
https://doi.org/10.3390/math9050555
https://www.mdpi.com/2227-7390/9/5/555
https://www.mdpi.com/2227-7390/9/5/555

18 B. Maat

A Activation Functions

A.1 Activation functions visualization

A visualization of the activation functions can be found under Fig. 4.

Fig. 4. Activation functions ABS, PARA and SIGLIN

A.2 ABS Backward

For ABS we implemented a stable version of the backward pass in PyTorch as
described in Equation 6

∂L

∂x
= (a · sign(x+ b) + l) · ∂L

∂y
(6)

Modeling Discrete Count Data 19

A.3 PARA Backward

For PARA we implemented a stable version of the backward pass in PyTorch as
described in Equation 7

∂L

∂x
= ((2ax+

b

2
) + l)

∂L

∂y
(7)

A.4 SIGLIN Backward

For SIGLIN we implemented a stable version of the backward pass in PyTorch
as described in Equation 8

s = 2b · sigmoid(
2ax− 2l − 2b

b
)

∂L

∂x
=

{
2a · s · (1− s) · ∂L

∂y , if s < b

0, otherwise

(8)

A.5 SIGLIN

SIGLIN could be further refined for better gradients. Later in the research, we
discovered that Log Sigmoid could be modified to have a similar effect, but with
smoother gradients due to Log Sigmoid not containing Min and Max functions.
The main difference is the steepness of the cross-over point. This is not used in
the research, but valuable for further research. As described in Equation 9, the
α parameter determines the slope, the β parameter the crossover point and the
l parameter the lower bound of the function.

µ = − log(
1

1 + eµα
) · b+ l (9)

B CONTIN

As part of the early preliminary research of CONTIN the Two-Way bounded
version of the distribtion has been explored by the means of a Variational Auto
Encoder (VAE). Besides this early exploration phase, the unbounded version of
CONTIN has also been fully implemented, but has never been properly used. In
Equation 10 the unbounded version of CONTIN can be found, while in Equation
12 the two-way version can be found. Both variants use the same variables from
Equation 1.

x = target value

bp =

{
bf if x ≤ µ

bc else x > µ

d =

{
⌊µ⌋ − x if x ≤ µ

x− ⌈µ⌉ else x > µ

logP (X = x|µ, γ) = log (bp) + d · log(γ)
logP (X = x|µ, γ) = log (1− γ)− log(1 + γ) + logP (X = x|µ, γ)

(10)

20 B. Maat

x = target value
l = lower bound
u = upper bound

bp =

{
bf if x ≤ µ

bc else x > µ

d =

{
⌊µ⌋ − x if x ≤ µ

x− ⌈µ⌉ else x > µ

logP (X = x|µ, γ) = log (bp) + d · log(γ)
logP (X = x|µ, γ) = log (1− γ)− log(bf · (1− γ⌊µ⌋−l+1) + bc · (1− γu−⌈µ⌉+1)) + logP (X = x|µ, γ)

(11)

B.1 PMF

The PMF function of CONTIN can be described as Equation 12 and seen in
Fig. 5.

PMF = exp(logP (X = x|µ, γ)) (12)

Fig. 5. CDF of CONTIN

B.2 CDF

The CDF function of CONTIN can be seen in Fig. 6.

Modeling Discrete Count Data 21

Fig. 6. CDF of CONTIN

B.3 One-way CONTIN with µ = 0 and γ of 0.5

Fig. 7. One-way CONTIN with µ = 0 and γ of 0.5

22 B. Maat

B.4 CONTIN for VAE

The VAE is trained on the MNIST dataset, since this is a simple example that
has been proven before to work with VAE. CONTIN as a distribution function
is compared to the Gumbel Softmax distribution as well as the Discrete Weibull
distribution.

This research has not been completed due to time constraints and the shift
in focus to the one-way bounded version of CONTIN that is used for MIDI
Faithful. Nonetheless, there are some findings in regard to using CONTIN for
image generation. CONTIN in this version uses a sigmoid activation on the mu
variable that is scaled to the upper and lower bound of the data.

In Fig. 8 the flow of the model can be found. On the left the layers of the
encoder and decoder, in the middle the calculation of the posterior and prior,
and on the right side the respective three loss calculations.

Training has been inconclusive, but a strong indication that CONTIN is a
good option for image generation using VAE gaining similar loss values to the
Gumbell Softmax implementation. These results are not reported due to time
constraints limiting the ability to properly interpret these results. Furthermore,
it is suggested that applying batch normalization in the final layer improves
the results of CONTIN significantly. This was tested to discover whether this
addition could have been the reason for the better performance of CONTIN in
Transformer models in comparison to other distribution methods. In Figures 9
and 10, different visual results can be found of the different loss functions after
training the VAE.

Modeling Discrete Count Data 23

Fig. 8. Flowchart of VAE

24 B. Maat

Fig. 9. Generated images of CONTIN, left step 540, right step 2000

Fig. 10. Generated images of Gumbell, left step 540, right step 2000

Modeling Discrete Count Data 25

C Datasets

Table 8 describes a list of scales and Table 9 the different rhythmic patterns used
by the synthetic datasets.

Table 8. Different scales used in the synthetic datasets

Acoustic scale Aeolian mode or natural minor scale
Algerian scale Altered scale or Super Locrian scale

Augmented scale Bebop dominant scale
Blues scale Chromatic scale

Dorian mode Double harmonic scale
Enigmatic scale Flamenco mode

Gypsy scale Half diminished scale
Harmonic major scale Harmonic minor scale

Hirajoshi scale Hungarian minor scale
Hungarian major scale In scale

Insen scale Ionian mode or major scale
Istrian scale Iwato scale

Locrian mode Lydian augmented scale
Lydian mode Major bebop scale

Major Locrian scale Major pentatonic scale
Melodic minor scale Minor pentatonic scale

Mixolydian mode or Adonai malakh mode Neapolitan major scale
Neapolitan minor scale Non-Pythagorean scale

Octatonic scale Persian scale
Phrygian mode Quarter tone scale

Scale of harmonics Slendro
Tritone scale Whole tone scale

26 B. Maat

Table 9. Different rhythms used in the synthetic datasets, 1=quarter note, 0.5=eight
note, 0.25=sixteenth note, 0.75=eight dotted, 1.5=quarter dotted

1, 0.5, 0.5, 1, 0.5, 0.25, 0.25 0.5, 1, 1, 0.5, 1
1, 0.5, 0.5, 1, 1 1.5, 0.5, 0.5, 0.5, 1
0.5, 1, 0.5, 1, 0.5, 0.5 1, 1, 1, 1
0.5, 1.5, 1, 0.5 1, 0.5, 1.5, 1
1, 1, 0.5, 0.5, 1 0.5, 1, 1, 1, 0.5
0.75, 0.75, 0.75, 0.75, 0.5, 0.5 1.5, 0.5, 1, 1
0.5, 0.5, 1, 1, 1 0.5, 0.5, 0.5, 1.5, 1
1, 1, 0.5, 0.5, 0.5, 0.5 0.5, 1, 0.5, 0.5, 1, 0.5
1, 1, 0.5, 1, 0.5 0.5, 1, 1, 0.5, 0.5, 0.5
0.5, 0.5, 0.5, 1, 1, 1 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5
0.5, 1, 1, 0.5, 1 1, 1, 1, 0.5, 0.5
1.5, 0.5, 0.5, 0.5, 1 1, 0.5, 0.5, 0.5, 1, 0.5
1, 1, 1, 1 1, 0.5, 0.5, 0.5, 0.5, 1
1, 0.5, 1.5, 1 0.5, 1, 0.5, 1, 1
0.5, 1, 1, 1, 0.5 0.5, 1.5, 0.5, 0.5, 1
1.5, 0.5, 1, 1 1, 0.5, 1, 0.5, 1
0.5, 0.5, 0.5, 1.5, 1 0.5, 0.5, 1.5, 1, 0.5
0.5, 1, 0.5, 0.5, 1, 0.5 0.5, 1.5, 1, 1
0.5, 1, 1, 0.5, 0.5, 0.5 1.5, 1.5, 1
0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5 0.5, 0.5, 0.5, 0.5, 1, 1
0.5, 0.5, 1, 1, 0.5, 0.5

	Modeling Discrete Count Data with Continuous Probability Distributions: With An Application In Music Generation

